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The periodic-type solutions of the semidiscrete (ordinary differential) and difference-difference
(functional with shifted arguments) versions of the Korteweg—de Vries equation are considered.
Applying the formalism of dispersion equations, the quasiperiodic solutions and solutions in the
form of solitons on the background of periodic wave trains are found and discussed.
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Very soon after the discovery of soliton processes for
numerous partial differential equations (PDE), the equa-
tions discretized with respect to a single independent
variable were considered, leading to ordinary differential
equations (ODE). They also exhibited the multisoliton
and quasiperiodic solutions and the best known are re-
lated to the Toda chain.

Recently a growing interest can be observed in the
analysis of a certain class of nonlinear functional equa-
tions, whose solutions have soliton-type properties, e.g.,
[1,2]. This relates to the existence of the multisoliton
and/or quasiperiodic solutions, together with an appli-
cation of the modification of inverse scattering method
(IST) in the first case, and the Riemann surface philoso-
phy in the second one.

The present paper can be considered as the generaliza-
tion of results announced in [2], periodic (one-gap) solu-
tions of semidiscrete and difference-difference Korteweg—
de Vries (KdV) equations (sd-KdV and dd-KdV, respec-
tively) have been found. In a natural way the first one,
sd-KdV, represents the ordinary differential equation,
but dd-KdV makes a pure functional equation.

We preserve the terminology of semidiscrete and
difference-difference Korteweg—de Vries equation used in
[2], after Hirota [11]. It should be stressed, however, that
in both cases the independent variables z and ¢t can be
considered always as continuous ones. In this context
dd-KdV belongs to the class of functional equations with
shifted arguments rather than to the class of difference-
difference equations. Similarly, sd-KdV represents an
ODE also with shifted arguments.

Applying the technique of dispersion equations de-
veloped earlier for PDE’s, below we present the multi-
periodic (multigap) solutions, not referring them, how-
ever, to the structure of Riemann surfaces following from
IST. As for PDE’s, the method is similar to the famous
Hirota technique and the most surprising conclusion is
that for functional equations this technique also holds.

In this sense the presented paper makes an alterna-
tive approach or illustration of the results reported in
[1]. Moreover, our formalism allows one to construct the
solutions of sd-KdV, dd-KdV, and similar equations in
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the form of multisolitons on the background of multi-
phase quasiperiodic solution. An elementary example of
a single soliton on the background of periodic solution
for dd-KdV concludes this part.

In the last part, a definition of a discrete version of the
Hirota differential operator D is given, which, in conjunc-
tion with the addition property (1), justifies an applica-
tion of the Hirota-like formalism to ODE and even to the
functional equations.

Let us consider the class of functions F : C9 — C
having the following factorization property:

F(z+w)F(z —w) = Y We(w)Ze(2), (1)

where the sum is over a finite set (here always Zj) and
the functions Z, and W, also map C?9 —C. It is obvious
that if Z. are linearly independent, W, is symmetric, i.e.,
We(w) = We(—w).

Furthermore, if a Riemann © function is chosen as the
function F, Eq. (1) is known as the addition property of
Riemann © functions and a few possible realizations of
(1) exist.

Let B be a Riemann matrix (i.e., B € C9*9 is symmet-
ric and with a positively definite imaginary part), z € C9.
Then the Riemann © function defined as

©(z|B) := Z exp[im[2(z,n) + (n, Bn))], (2)
nez9
with
(z,m) =3 zims, (3)

constitutes a particular case of so-called Riemann © func-
tions with characteristics a, 3 € R9, defined as

Oa, B)(2|B) := Y exp{in[2((z + B), (n + a))

nez9
+{(n+a), B(n + a))]}

= exp{ in[2((z + B), @) + (o, Ba}]}
x©(z + B + Bal|B). (4)

Of course, if n and m are integer (m,n € Z9), then
©[0,7](z|B) = ©(z|B), (5)
and also
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O(z + n+ Bm|B) = exp[—in(2(z,m)
+(m, Bm))]|©(z|B). (6)

In the case when z € C and B € C, the multiple
sums in (2) and (4) reduce to a single one and then to
the Riemann functions of a single variable, ©]0, 0](z|B),
©[1/2,0](z|B), ©[0,1/2](2|B), and ©[1/2,1/2](2|B), also
known as the four basic Jacobi functions. As was men-
tioned before, for the Riemann © functions, there exist a
few versions of Eq. (1), depending on how the functions
W and Z are interpreted.

Let F functions be the Riemann © functions

F(z+w) =0(2+w|B) and F(z—w)= 0(z —w|B),
(7)

then, either

Z(2) = Ole1/2,e2/2](|B)?,

We(w) = 2798le1/2,€2/2)(|B)*/©(0|B)?,
(8)

with €:= €1,€2;€61 € Z3,€2 € Z3,

Z.(z) = ©(z + ¢/2|B)?,

or

We(w) =279 ) (=1){ exp(i2m(w, )
nezs
xO(2w + Be|2B)/©(Be¢|2B), (9)

ee 723,
Z(z) = Ole/2,0](22|2B)
= exp[in(2(z,€) + (¢, Be)/2)]|O(2z + Be|2B),

We(w) = ©[¢/2,0](2w|2B)
= exp[im(2(w, €) + (¢, Be)/2)]©(2w + Be|2B),
€€ 73, (10)

or

Z.(2) = O(= + ¢/21B/2),
W.(w) = 2790 (w + ¢/2| B/2), (11)
ec Z§.

The above equations are useful in the derivation of a
system of dispersion equations for some nonlinear partial
differential equations of soliton type and also for their
discrete or functional variants.

Equations (8) and (10) are the special case of more gen-
eral statements concerning the addition of © functions
[3-5]. Relation (9) is particularly convenient if a process
in the form of a soliton on the quasiperiodic background
is considered [6,7]. On the other hand, a relatively sim-
ple formula (11), see [7], can be applied, unfortunately,

only to the quasiperiodic solutions, since in the so-called
soliton limit some elements of the sum on the right hand
side of (1) become singular.

The fundamental consequence of the property (1) is
that for the function F one can easily calculate the subse-
quent derivatives and, what is most important, the basis
is always the same.

For example, if the property (1) holds, we have for the
first derivatives of the shifted F' functions,

[In[F(z + w)/F(z — w)]] ;

7

=) Wei(w)Ze(2)/[F(z +w)F(z — w)], (12)

using a shorthand notation 8/9z; := (-) ;. Denoting L :=
In F'(z), for even derivatives we have

L(2)i; = 3D Weij(0)Ze(2)/F(2)?, (13)

L ikt +2(LsjL gt + LiwL ji + L L ji)

= Z We,ijki(0)Ze(2)/F(2)?, (14)

L iikimn + 2£L,ijL,ktmn + .- l +4 (L LgiLimn + )

15 permutations 15 permutations

=D Weijkimn(0)Ze(2)/F(2)?, (15)

etc. [7].

Note that in (13)—(15) the set of functions of argument
z on the right hand side, which forms a basis, is always
the same. Moreover, the differential properties (13)—(15)
of F functions satisfying (1) determine a certain, pre-
viously known, so-called second hierarchy of KdV equa-
tions. The first member of this hierarchy, related to (14),
is the KdV equation and the second one, related to (15),
is the Kotera-Sawada equation.

This fact allows one to write easily the dispersion equa-
tion for the above mentioned partial differential equations
[7,8]. Here we confine ourselves to the KdV equation, but
the same procedure can be applied to other commonly
known soliton-type equations.

Starting from the KdV equation in the form u;+6uu,+
Uzze = 0, and using the substitution u(z,t) = 2(In F) 4,
where F' = F(kz + wt) and k,w € C9, we arrive at the
equation

g g
E wiK,jL’,;]' =+ E KiKjKEK]

3,j=1 4,5,k =1

X[Lijet + 2(L,i;L .t + L L ji + L aL jx)] =c, (16)

where c is an arbitrary constant.
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Considering Z(z) as linearly independent, due to (14)
Eq. (16) reduces to the system of algebraic equations

g g
Z“i"jWe,ij(0)+ Z KikjkrKiWe ijni(0)

=1 i,d,k, =1
—cW,(0) =0, (17)

for any e specified by (1).

Since (17) involves the propagation vectors x; and an-
gular frequencies wj, it is natural to call this system
of equations a system of dispersion equations (SDE). It
is a system of 29 equations for 2g unknown quantities
mj/c1/4,wj/c3/4(j = 1,...9) and thus for ¢ > 2 it is
overdetermined.

Hence for ¢ > 2 the SDE supplies the conditions for
the elements of the B matrix being a parameter of the
solution. In the language of algebraic geometry this is
equivalent to the B matrix being a period matrix of a
suitable Riemann surface.

We do not intend to discuss this problem further and
the reader is referred to the extensive literature on the
subject [3,4,9,10].

For g = 1, all functions appearing in (1)—(17) are func-
tions of only one variable (Jacobi 6 functions) and the
SDE reduces then to the simple formula

=W 0)W (0) - Wo(0)W ¥ (0)]
WP (0) - Wo(W P (0)]

(18)

For g = 2, the relations are slightly more complicated.
However, for g = 3 we get also two conditions for the
six elements of the B matrix. It means that among six
elements of the B matrix only four can be assumed arbi-
trarily, in contrast to the case of g < 3, when an arbitrary
Riemann matrix B is admissible. As a rule, for g = 2 Rie-
mann O functions cannot be represented by Jacobi (i.e.,
one-dimensional) functions. There are only a few rather
exceptional situations when such expansion is possible.

Now, let us consider the semidiscrete KdV equation
[11,2],

Unge = (14 un)z(un——l/2 — Unt1/2),
(19)
Up 1= fn——l/2fn+1/2/f3. - L
Denoting
fn = F(kn + wt), (20)

where kK € C9, w € C? and n is integer, we obtain

zg:wi {ln [fn+1/4+1/4 fn—1/4-1/4] }
=1 )2

frt+1/a—1/4 fno1/a41/a ,

_ fn—1/av3/afn—1/4—3/4 _ Sfrt1/a+3/4fns1/a-3/4
fa—1/av1/afn—1/4-1/4

frnt1/av1/afns1/a—1/4
(21)

Since F' has the property (1), through (12), similarly

J. ZAGRODZINSKI 51

as in the case of a doubly differential, traditional KdV
equation, we obtain

zg:w,-we,i(n/z;) + CoW.(k/4) + W.(3x/4) =0, (22)

=1

for any € for which (1) holds. Here W;(x/4) :=

;| /s’ and Cp is a certain constant, which eventu-
ally can also be determined, although it is not necessary.
In particular cases W, can be given by (8)-(11).

Now the conditions of solvability look slightly different
than for (17). Although x appears as an argument of the
W function, one can argue that up to g = 2 the solution
always exists and for g > 2 some additional conditions
for the parameter (B matrix, if F is interpreted in terms
of © functions) of the W function have to be satisfied.

For g = 1, as previously, we have

_ —[Wo(8A) W1 (A) — Wi (3A)Wo(N)]
W)W (A) = Wi () Wo(N)]

(23)

where A = /4, and W' denotes the derivative with re-
spect to argument.

For ¢ = 2, in the case of quasiperiodic pro-
cesses, W functions are represented by the © func-
tions parametrized by Riemannian matrix B, and the
solution exists for any choice of Riemannian matrix
B, (B11, Ba2, B12, B21).

If the representation of W functions in terms of the
Jacobi € functions is adopted (g = 1) according, e.g., to
the scheme (8), the relation (23) can be simplified to

w = —0[1,1](x|B)/0'[1,1)(0| B), (24)

and then to the soliton dispersion relation (B = ib,b —
co)

imw = —sinh(irk), (25)

when the definition (2) of ©(z|B) holds. This equation
is identical with that of Ref. [2], if we disregard the im
coefficient following from a different definition of © func-
tions.

Now let us consider the the functional variant of
the KdV equation, denoted in [11,2] as the difference-
difference KdV equation,

—[1/un(t +8/2) — 1/un(t — 6/2)]/6
= un—l/Z(t) - un+1/2(t)v (26)

where on the left-hand side we have the discrete version
of a derivative with respect to t. The variables n and
t can be continuous or discrete and it is convenient to
substitute

Un = fr1/2() fat1/2(t)/ fa(t +6/2)fn(t — 6/2) — 1.
(27)
Assuming the solution in the form of (20), introducing

a simpler notation g(z) = F(kn + wt + z), where (kn +
wt + z) € C9, with z € C9, and denoting also



G(wé, k) i= ~[g(w8)g(—wb/2 — k/2)/8 + g(~R)g(wS/2 + K/2))/9(wd/2 — x/2)g(0),

we obtain from (26)

G(wé, k) = G(—wd, —kK). (29)

Since this equation should hold for any n and ¢, one

can look for a solution of (26) assuming that

G(wé, k) = C(wd, k), (30)

where C does not depend on n,t but it is a function of
wd and k. This leads, of course, to

9(w8)g(~wb/2 — K/2)/6 + g(—K)g(ws/2 + /2)

+Cg(wé/2 — k/2)g(0) = 0. (31)
The definition of g and property (1) of F now yield

> We(*w) /6 + We(Pw) + CWe(*w)]

X Ze(kn + wt =2 w) =0, (32)
where

lw: = (3wd + k)/4, 2w = (wd + 3k)/4,
(33)
Sw: = (wé — ka)/4, *wlwlweCT.

The solution of the system (32) reduces to the solu-
tion of the system of algebraic equations (i.e., dispersion
relations)

W.(*w)/8 + W (w) + CW,(*w) = 0, (34)
where C is again a constant with respect to n and ¢, de-
pendent on dw and k. The set of solutions of dispersion
equations (34) contains all the solutions of (32) whenever
Z. form a set of linearly independent functions. [More ac-
curately, there are two branches of solutions determined
by equations of the type given by (34), but each branch
can be obtained from the other by the transformation
d— -4

All remarks concerning the relation (22) can also be
applied here. Similarly as before, for fixed g (number
of zones) we have a system of 29 equations (for any
€ € Z3) involving 2g + 1 parameters to be determined
(ki,wi,t = 1,...,9 and C). For g = 1 the dispersion
relation reduces to

_ = [Wo(rw)W: (Pw) — W1 (*w)Wo(Pw)]

2= TWoCw) Wi ) — Wi (o) Wo (o))

(35)

If F and consequently Z., W, are interpreted in terms
of Riemann © functions, solvability of (34) determines
the existence of a multigap solution of the dd-KdV equa-
tion.

One can ask whether there exists a correspondence be-
tween (34) and (22) in the limiting case when § tends
to zero. Let us observe first of all that in (34), close
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(28)

|
to the point § = 0, C has to have an evaluation C =
—1/6+Co+ C16+---. Substituting C' and Taylor expan-
sion of W into (34) and keeping only the terms of order
of 6°, we obtain just Eq. (22).

Similarly, as previously in the context of (23), for peri-
odic processes and g = 1, Eq. (35) for periodic solutions
can be simplified to the form reported in [2],

O[1,1])(rwd|B) = § ©[1,1](7x|B), (36)
and next to the dispersion equation for a single soliton
solution

sin(mwd) + d sin(wk) = 0. (37)

For real § Eq. (37) has an imaginary solution (x,w €
iR) — then (27) represents the soliton solution. There
also exists a real solution (k,w € R) but then (27) repre-
sents the singular wave train solution. Examples of both
types of solutions are presented in Figs. 1 and 2.

As was mentioned before, different interpretations of
functions F, W, and Z appearing in Eq. (1) are possi-
ble. The corresponding solutions are of course equivalent
up to a modular transformation of © functions. If we
confine ourselves to the © functions, we have at least
four possibilities, (8)—(11), to determine W and Z. It is
natural to treat the soliton processes as a limiting form of
quasiperiodic ones. The details of such a procedure can
be found in [7,8]. Let us denote such a limiting process
as S-lim (soliton limit), for the time being not defining
it precisely.

In order to satisfy relations analogous to (12)—(15), the
operation S-lim should have such a property that if (1)
holds then also

S-lim[F(z + w)]S-im[F(z — w)]

= S-lim[W,(w)]S-lim[Z(2)]. (38)

FIG. 1. A single soliton as the solution of a functional (dif-
ference-difference) KdV equation for § = 0.6, 1.5, 3 (from top
to bottom), and a = iwk, k imaginary; see [2] for the exact
formula.
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FIG. 2. A singular periodic solution equivalent to a single
soliton for § = 2 and k = 1/(2n) real.

The operation S-lim can now be defined as follows.
Let the Riemannian matrix B € C9%9 be decomposed
into blocks B*® € C**®, BPP € CP*P BP* ¢ CP** and
B#?P = (BP?*)! where superscript ¢ denotes transposed ma-
trix. Of course s + p = g and matrices B** and BPP are
also Riemannian. Let the argument z € C9 be similarly
decomposed into z, € C* and 2, € CP.

The matrix D*° := Im[diag(B**)] has s diagonal el-
ements d;. We define the S-lim operation as an s-fold
limit
J

. . z® —1D®*%e*/2 | B®®* B°®P
S-lim ©(z|B) : = dlgnoo@ 2P / ‘ BP* Bpp]

=:T(2), (39)
where all elements of diagonal matrix d; tend to infinity
and e = (1,...,1)* € Z*. It turns out that the limit
for the fixed Riemannian matrix B exists always, and

relation (1) in version (9) has the property (38) taking
finally the form of

T(z+w)T(z —w) = Y We(w)T(z +¢/2)%,  (40)

where the sum is over g-dimensional hypercube ¢ € ZJ
and

T(z) = Z exp [iw(Z(n, 2°) + (n, §’”n))]

ne(Zz)®
x O (2P + BP*n|BFP), (41)

with B®® := B** — iD**, i.e., having only real diagonal
elements. The W function is now defined as

We(w) =279 Z (—1)¢eH) exp(i2m(w, €))
HEZF
x R.(2w|2B)/R.(0|2B), (42)

where

R.(2w|2B) := Zexp {—i'lr(ps, [2w® + B** (e — u°) + Bs”e”])}

ne

x©(2wP + BPPeP + BP*(e* — 2u°)|2BPP) (43)

and in the last sum over p®, the summation is over such
u® € Z3§ that also (e* — p®) € Z3. Of course €9 is decom-
posed also in €* and €P parts.

It is clear that the formalism (39)—(43) leads to the
processes in the form of multisolitons (s solitons) on the
background of the p-phase quasiperiodic wave train. In
the marginal situations when s = 0 or p = 0, one has pure
quasiperiodic or pure multisoliton processes, provided the
relevant system of dispersion equations is fulfilled.

In application to the dd-KdV equation here we shall
discuss only the simplest nontrivial case of a soliton on
the background of a periodic wave train (s =p = 1).

Rewriting (34) as

3
Z 'YiWE(iw) =0,

=1

with v=(1/6,1,C), (44)

where now ‘w € C?(i = 1,2,3) and taking into account
(42) for any € € Z2 [i.e., € = (0,0), (1,0),(0,1), (1,1)], we
obtain the following dispersion relation:

3
Z 7; exp(i2m(*w, €)) Re (2 ‘w|B) = 0

=1

for any € € (Z3)%, (45)

f
i.e., for € = (0,0),(1,0),(0,1),(1,1). Let us ascribe in-
dex 1 to the s part (soliton) and index 2 to the p part
(periodic). Instead of (20), through (41), F is given now
by

F(2) = T(2) = ©(22|Ba2) + explim(221 + B11)]
X O(z2 + B12|B22), (46)

where B, is real and without losing generality can be
chosen as zero. It is seen that the solution asymptoti-
cally (z; — +io00) has the form of a periodic process, but
there exists a shift between the left and right hand side
asymptotics and the off-diagonal element of the starting
B matrix (i.e., B12) represents its measure.

Let us consider now the dispersion equation (45). We
shall write explicitly the full system of four equations
in order to show a peculiar property of such a mixed
solution: the “dominance” of the periodic subprocess (or
periodic phase) over the soliton one. For simplicity we
assume Eu =0.

For ¢ = (0,0),(1,0),(0,1),(1,1) the relevant equations
are

3
> v exp(i2m ‘w2)© (2 *w;[2B32) = 0, (47)

i=1
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3
Z 7; exp (27 *w2) O (2 *wy 4+ Ba3|2B32) = 0, (48)
i=1

3 . . .
Z ~; exp(i2m *wy) [exp(i27r *w;)O(2 we + B12|2B22)

=1

+ exp(—i27 ‘w;) O (2 wq — 31212322)] =0, (49)

3
Z'y,- exp(i2m ‘w;) [exp(i?ﬂ ‘w,)O(2'wy 4+ Bia
=1

+ B22|2B22) + exp(—i27w z"41)1)@(2 ‘wy — By

+ Bzz|2322)] =0, (50)

respectively. The quantities to be determined are wq, K1
and wy, K2 involved by means of *w; and *w,, respectively
(:=1,2,3), due to (33), and perhaps C. Observe that w;
and ko, i.e., the quantities which determine the periodic
subprocess, can be obtained from Eqs. (47) and (48).
However, these equations are the same for the single pe-
riodic process considered alone, without the presence of
the soliton one. On the other hand, the quantities w; and
x1 which relate to the soliton subprocess depend on the
periodic subprocess via (49) and (50), but not vice versa.
This means that for the solution in the form of a soli-
ton on the periodic wave train background, the periodic
subprocess is primary to some extent.

The above conclusion is exactly the same as in the case
of partial differential equations, e.g., KdV, and can be
justified by energetic consideration. This effect is to some
extent opposed to a common practice in a perturbational
approach, where, in the presence of solitons, the periodic
subprocess is assumed to be a small perturbation usually
and hence considered as secondary.

An example of a dd-KdV solution in the form of a
soliton on the periodic wave train background as an exact
analytical solution of (26) according to (27), (45), and
(46) is presented in Fig. 3. The preceding discussion
concerning the ”dominance” of the periodic subprocess
relates also to this case and the parameters of the periodic
phase are determined only by (47) and (48).

One can wonder why the technique originated in fact
from the Hirota approach is adaptable for PDE, ODE,
and functional equations as well.

Two facts play a crucial role. The first one is the class
of functions involved, which satisfy the addition relation.
The second is the definition of a discrete version of the
Hirota bilinear differential operator D [11], let us call it
ﬁa, which in the limit tends to D, and together Xvith the
addition property (1) admits the summation of D opera-
tors with different powers. Let us define the operator 1~)a
for functions f and g of a scalar argument and a step a
being a parameter through the relation

~n 2L (=1)kn!
D (f,9) = mf[-’v + (n/2 — k)a]
k=0

xglz — (n/2 — k)a]. (51)

FIG. 3. Solution of the functional (difference-difference)
KdV functional equation in the form of the a peri-
odic wave train background. Parameters of the so-
lution § = 2, B2 = 1i1.44, B;2 = —i0.5; soli-
ton: k1 = —11.656, ww; = 13.277; wave train:
wky = 1l, Twz = —11.108; see Egs. (47)—(50).

The definition of ﬁa is of course not unique. The def-
inition proposed here differs from the definition of a dis-
crete operator reported, e.g., in [12].

It is obvious that the limit

7

tim 52(£,9) = D"(£,0) = o f (@ +a) g(x ~ a)

a=0

(52)

coincides with the definition of the bilinear differential
Hirota operator [11]. The second property is also fun-
damental. If the functions f have the addition property
(1), all operators DZ(f, f) have the representation

~n 2L (=1)kn!
Dz (f, f) = Z m)’[m + (n/2 — k)a]
k=0 °

xfle — (n/2 — k)a] = Y _ Ye(n)Zc(z), (53)

where

2L (=1)kn!
Yo(n) =) mWe((n/2 —k)a). (54)
k=0

This means that D?(f, f) of different n can be easily
added, since the “basis” does not depend on the order of
the operator. As a final result we obtain the dispersion
equations.

The last conclusion is identical to the case of differen-
tial operators and therefore the author is convinced that
the addition property (1) plays a fundamental role for
PDE, ODE, and functional equations of a soliton type.

The author is grateful to S. Lewandowski, M. Ja-
worski, and J. Pelka for stimulating discussions and care-
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